

The Importance of International Coordination and Collaboration from a Vender's Perspective

By

Samuel M. Smith Ph.D. August 10, 2006

Adept Systems Inc.,

2966 Fort Hill Road Utah 84005

801.766.3527x112 (voice) 801.766.3528 (fax)

smithsm@adeptsystemsinc.com www.adeptsystemsinc.com,

Adept Systems Inc.

Adept founded in 1994

Experts in networked automation & control systems
Expertise in ANSI 709.1/852 & IEEE 1394 protocols
Active participant in ANSI 709.1, 852, 852.1 standards
development

Expertise in engineering design, vertical capability for embedded systems, software, electronics design and manufacture

Adept's Role

OEM of Standards Based Component Level Automation Infrastructure (CLAI) components for worldwide market

Technology Innovator

Developer of prototypes and capability demonstrations

Research and Development in systems design for survivability and affordability

International Standards Dependency

- Adept would not have a business without standards
 - ANSI/EIA/CEA 709.1, 709.2, 709.3,
 - ANSI/EIA/CEA 852A 852.1
 - CENELEC TC247 EN 14908.1, 14908.2, 14908.3, 14908.4, 14908.5
 - ISO/IEC JTC-1/SC25 WG#1
 - LONMark
 - IEEE 802.11, 802.3
 - EIA 485
 - CE mark
 - FCC EMI
 - ROHS
 - Web Standards
 - OBIX
- Standards management is single largest external business management activity
 - Committees, coordination, collaboration
 - Implementation development and testing
 - Manufacturing compliance
 - Advance marketing, education, and awareness

CN/IP Tunneling

- Building Management Systems: HVAC, Lighting, Security, Utilities
 - Leverage IP networks, CN wiring expensive
 - Remote monitoring and management
 - Enterprise Integration
 - Newer systems no longer isolated
- Component Network (CN)
 - Device level protocol such as LonTalk, CAN, CEBus, Profibus, BacNet ...
- IP Tunneling with CN-IP Gateways
 - Source CN-IP Gateway adds IP Header "wrapper" to CN packet received from source CN Node
 - Source CN-IP Gateway delivers wrapped packet over IP network to destination IP-CN Gateway
 - Destination IP-CN Gateway removes IP Header and delivers CN packet to destination CN node
- Need IP Management Layer on Top of CN
 - IP addressing
- CN-IP Device Types
 - CN Router (Network Layer Gateway)
 - CN Node that communicates using IP only (direct tunneling with gateway)
 - Application Layer Gateway
- Example IP Tunneling Protocols
 - ANSI 852 "LonTalk", ProfiNet, BacNet/IP

ANSI 852, Cenelec EN14908.4 Standard

- 852 (2001), 852-A (2004)
 - Generic Configuration Protocol for IP Tunneling of Component Networks
 - Application Level Interface for Configuration Services. Manual or Automatic
 - CN Packet Order Preserving
 - Packet Aggregation and Segmentation
 - Duplicate and Stale Packet Handling
 - MD5 Packet Authentication for Security, no encryption
 - Additional CN Security or Authentication Schemes
 - Uni-cast or Multi-cast, UDP or TCP
 - Selective Forwardiing
- 852.1 (In Development)
 - Enhanced Configuration Management for Scalability
 - Optimized Forwarding Algorithm
 - NAT
 - Virtual Configuration Servers
 - Bilingual Interoperability Path
 - Notably missing so far is enhanced security
- 852.1A
 - IPV6
 - Data Encryption

852 CN Router/IP Gateway

Systems Integration Problems

- Building Large CN Networks
 - Large number of nodes
 - Bandwidth Management
 - Distributed over Multiple sites
 - Leverage Existing IP Network Infrastructure
 - Retrofit

- High Availability Applications
 - Redundancy

852 Standard Based "Transparent" CN/IP Router/Gateway

Advantages:

Transparent "Flat Architecture"
Unified Network Management
High Performance
Scalable
Enables Remote Monitoring
Enables Hybrid Architectures

NAT and DDNS

High Availability Architecture

Case Studies

- Stadium "Staples Center"
- High Availability "Pharmaceutical Plant"
- High Availability "Automated Fire Suppression System"

Staples Center Network

"852/IP backbone was phenomenally more responsive than the 1250 backbone".

9/20/2006

Pharmaceutical Plant

- Needed highly reliable 709.1/852 network
 - Minimize single point failure sources
 - Fully redundant network infrastructure although not redundant control devices
- Solution
 - FTT-10 Rings
 - Dual Redundant 100 Base-T Ethernet
 - Fiber Ethernet Redundant Ring
 - Redundant Twin Mode LON/IP routers
 - 30 Routers 15 FT-10 channels in Phase 1
- 709.1/852 Network Team
 - TAC UK
 - Control Network Solutions
 - Adept Systems

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

High Availability Plant

AFSS on EX USS Shadwell

- Naval Surface Warfare Center (Philadelphia)
- Survivable Automated Fire Suppression System
 - Test on EX USS Shadwell
 - 709.1 and 852 Based
 - FTT-10 Rings
 - IP Backbone with Redundant Twin LON IP Routers
 - Smart FTT-10 Short Isolators
 - Smart Valves

Naval Surface Warfare Center Carderock Division

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

AFSS Test Network

CN/IP Tunneling Vulnerabilities

- Malicious Configuration Server Hijack
 - Configuration without authentication may make a device susceptible to being hijacked by malicious configuration server
- Malicious Device Masquerade
 - Configuration without authentication may allow malicious device to masquerade as legitimate device and be allowed to join channel
- Malicious Intercept and Replace of Tunneled Packets
 - CN tunneled packets sent without authentication may be intercepted and replaced with malicious packets as long as CN packets are not also authenticated
- Denial of Service Attacks

Lessons Learned From Survivability

- How to make automation systems more survivable to catastrophe cost-effectively?
- Survivability: Three Aspects
 - Susceptibility = Likelihood of strike
 - Vulnerability = Ease of damage once hit
 - Recoverability = Ease of repair once damaged
- Damage will Occur, no matter what. Hardening is an exercise in diminishing returns.
 - Dynamic Reconfigurability is the Key.
 - xN+M Redundancy
 - Avoid common mode failures
 - Slow down damage propagation, buy time to respond

Control System Specific Characteristics

- Well known expected behavior, easier to detect failure or misbehavior
- Integral feedback loops can be used to compensate for malicious input.
- Redundancy associated with high availability systems.
 Provides opportunity to recover

Keys to Solution

- Dependable Topologies
- Local Intelligence
- Dynamically Reconfigurable Systems
- Modularity, Interoperability, Distributibility

Future

- Interoperable Multi-Protocol 852 CN/IP Gateways
 - Simplified Multi-protocol systems integration, configuration, and management.
 - Enabling Infra-structure for protocol and data translation
 - Protocol conversion at the network layer for transparency

Background

Network Topologies

MESH

Multiple Point Failure Tolerant Not Scalable

RING

BUS

Single Point Failure Tolerant

Single Point Failure Susceptable

HYBRID

Multiple Point Failure Tolerant Scalable

Dependable Network Characteristics

- Provides reliable communications in the presence of noise, malfunctioning nodes, and high traffic loads
- Does not suffer any interruption in network traffic due to single point media failures.
- Provides reliable delivery of packets at acceptable latencies
- Detects and reports single point failures
- Detects and reports multiple point failures
- Has redundant paths to reroute around network failures either single or multiple
- Can restore fragment operation through activation of redundant components

LonTalk Uniquely Suited for Reconfigurable Wired "Field Bus"

- LonTalk provides routing capability and large address space
- LonTalk supports multiple media types and tunneling
- LonTalk supports reliable message delivery
- FTT-10 supports "ring" topologies
- Multi-vendor interoperability
- Army Corp of Engineers standard for building automation

Fault Tolerance Redundancy Schemes

xN Redundancy: x copies of the system (ordoxN)

- Simplified fault management protocol System Copy
- Inherently Unscalable
- Cost Factors Scale Non-linearly with x
- Connectivity Problems

xN+m Redundancy: m copies of reconfigurable critical components

- Robust fault management protocol
- Scale logistically with network
- Scale economically with network

N+1:

Router Backup

xN+ m Redundancy

xN Redundancy:

80 node bus:

Bus 2N 4N

Exponential increase in hardware: x = 2, 4, 8, 16. (x copies of N nodes) Linear increase in Reliability

Parallel Bus Redudancy

xN+ m Redundancy: 80 Nodes partial mesh of channels

Fractional increase in hardware: m = 1, 3, 6, ... (m redundant routers) Exponential increase in Reliability Enables optimized reliability vs. cost

Network Component Terminology

Staples Center

- Multi-event facility, Professional sports and concerts.
 - Opened in 1999
 - Original HVAC and smoke evacuation control system soon showed problems coping with operational demands
 - By 2004 Bill Pottorff, Director of engineering decided to replace control system with open interoperable approach to enable better performance, flexibility and future scalability
 - Replacement system based on 709.1 and 852
 - Leverages existing wiring and IP infrastructure
 - Allows multi-vendor equipment
 - Increases capability
 - Enables future expansion
 - Retrofit Team
 - Systems Integration, Infinite Control Systems
 - HVAC Controllers, Distech Controls
 - Adept Systems LON/IP Routers

Details

IP Based Solutions

- Custom Application Layer Gateway:
 - CN to Custom IP Protocol
- Protocol Conversion Application Layer Gateway:
 - CN to Standard IP Protocol (BACNet, Others)
- Data Translation Application Layer Gateway:
 - CN to Internet Format (XML, HTTP,Soap others)
- 852 Open Standard Based CN/IP Router/Gateway
 - Transparent IP Backbone
 - High Availability Redundant Backbone
 - Flood Mode (Invisible Link)
 - NAT and DDNS

Custom Application Layer CN/IP Gateway

Advantages:

Swiss Army Knife Logical Isolation - Proxy Multiple-CN Protocols

Disadvantages:

Not Transparent From CN Perspective Complicated Network Management Proprietary - Non Standard Performance Overhead Host Application Limitations

Protocol Conversion Application Layer Gateway

Advantages:

Leverage Standard IP Protocol IP Control Nodes Logical Isolation - Proxy Multiple-CN Protocols

Disadvantages:

Not Transparent From CN Perspective Complicated Network Management Performance Overhead Host Application Limitations Data & Usage Mis-Matches

Data Translation Application Layer Gateway

Advantages:

Leverage Web Services
Content Repurposing
Logical Isolation
Multiple-CN Protocols
Enterprise Integration

Disadvantages:

Not Transparent From CN Perspective Complicated Network Management Severe Performance Overhead Host Application Limitations Data & Usage Mis-Matches

852 Standard Based "Transparent" CN/IP Router/Gateway

Advantages:

Transparent "Flat Architecture"
Unified Network Management
High Performance
Remote Monitoring
Enables Hybrid Architectures

Disadvantages:

No logical isolation Single CN No Data Translation

Hybrid Architecture

Advantages:

ΑII

Disadvantages:

None

Critical Systems Infrastructure

- Transportation Systems: ships, trains, planes, bridges, highways
- Utilities: power plants, dams
- Public Facilities: stadiums, concert halls, amusement parks
- Large Office Buildings
- Telecommunications Centers
- Any Facility visited by large numbers of people

New Era for System Reliability

- New political environment has created an enhanced susceptibility to sabotage, terrorism, or other asymmetrical attack
- Eventual result will be new requirements and specifications for facilities with enhanced survivability aspects
- Conventional notions of reliability and systems design in the automation systems employed in many critical facilities do not account for catastrophic failure due to attack and hence are vulnerable.
- Homeland Security Needs: Affordable, Reliable, & Survivable Automation Systems

Baseline Technology Problem

- Historical building automation systems have not been robust to damage and do not provide inherent costeffective survivability
- Open COTS automation technologies alone do not provide the inherent survivability needed for Homeland Security applications.
- ANSI 709.1/852 is the technology leader & de-facto open COTS standard for physical plant automation but survivability has not been a commercial priority.
- Adept has developed technology that enhances COTS automation technology to make it survivable and affordable.

Automation Infrastructure Attributes

- Scope = ubiquitous.
 - The infrastructure must include everything from the component level up through all the buildings subsystems, systems, operations, and off-site support.
- Access = transparent, peer-to-peer, global, & secure.
 - Transparency means that communication over the automation infra-structure's network is invisible to the application, that is, the overhead associated with network use is minimized.
 - The combination of peer-to-peer and global means that any given node can exchange information with any one node if so desired.
 - Secure means that all relevant information, sensor, control, & parametric data for each component are made available at appropriate levels of security.
- Structure = flexible.
 - The infra-structure must be scaled, extended, and adapted to different applications over space and time.
- Reliability = dependable.
 - Accurate media and network services must be continuously available at acceptable latencies.
- Cost = affordable.
 - The different attributes must be implemented in a highly cost effective manner. Reduced manning will only come at very high levels of automation with potentially thousands of nodes.
- Survivability = robust.
 - Must be capable of continued operation at sufficient levels of performance despite damage and casualties induced by shock, blast, fire, flooding, or radiation.

Fundamental Problem

- Commercial off the shelf approaches to automation infra-structures usually achieve some combination of attributes (1) - (5).
- What is unique to Homeland security applications is attribute (6), survivability.
 While many technology choices exist that may be able to provide attributes (1) (4), the major difficulty in achieving a suitable automation infra-structure for Homeland security is providing both attributes (5) and (6), that is, affordability and survivability. Survivability is the major cost factor.
- Consequently, the key to the solution is in finding ways to achieve more costeffective survivability.

Cost effective reliable automated systems using a scalable reconfigurable xN + M redundant architecture

Architecture Elements

- Distributed intelligence: from the component level on up
 - Supervisory control with local autonomy in the event of fragmentation
 - Local intelligence provides enhanced survivability through local situation awareness and conditional response/behaviors
- Dependable partial mesh of channels topology
- Network fragment healing
 - Fine-grained online reconfiguration capability
 - Supporting electronics
- Network design, installation, configuration, & management tools
- Network early warning "pre-hit" pre-configuration tools
- Complementary survivable reconfigurable networked power system
- Threat simulation, analysis, training, evaluation, and role playing tools
- Neighborhood-wide integration

Elements and Applications

- Survivable automation infrastructure elements
 - Automation network:
 - media, sentinels, routers, and network power
 - Attached automated systems:
 - Controllers, sensors, actuators, and systems power
- Applications
 - Security, monitoring, and situational awareness
 - Evacuation management
 - Neighborhood coordination
 - Damage assessment, control
 - Condition based maintenance

High Availability Architecture

